4(x^2-4)=(2x)^2+8x

Simple and best practice solution for 4(x^2-4)=(2x)^2+8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x^2-4)=(2x)^2+8x equation:



4(x^2-4)=(2x)^2+8x
We move all terms to the left:
4(x^2-4)-((2x)^2+8x)=0
We multiply parentheses
4x^2-(2x^2+8x)-16=0
We get rid of parentheses
4x^2-2x^2-8x-16=0
We add all the numbers together, and all the variables
2x^2-8x-16=0
a = 2; b = -8; c = -16;
Δ = b2-4ac
Δ = -82-4·2·(-16)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{3}}{2*2}=\frac{8-8\sqrt{3}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{3}}{2*2}=\frac{8+8\sqrt{3}}{4} $

See similar equations:

| 7(7c+1)-4c=13(3c-21 | | 1/5x-(2/5)=2/5x+7-(2/5x) | | 18-1/2x=36 | | w4-16=9 | | 6x2+14x-40=0 | | 91+6x=-36 | | -8303x=72 | | 17×b=7 | | 49+7x=36 | | 15×n=3 | | 46+8x=-83 | | 39-2x=17 | | ¾x+12=32 | | 5(5x+2)=-7x-8 | | 3/4x+12=32 | | 63-5x=-42 | | 1/5x=2/5x+7 | | 8y+28=-16 | | –10p=4(–3p−6) | | 8y+4=-16 | | y+10=y-19 | | 2(4x-3)=10x+3 | | 0=640-16t^2 | | -5x-(-4x)=-4x+6.5-(-4x) | | 9z()=36() | | |2x-4|=|5x-7| | | 9y+7=-11 | | 37=n-41 | | 10f-31=10f-155 | | 18x-15x=15 | | 6x=50-(4x+30) | | 65=o+7 |

Equations solver categories